

RHIC-AGS Users' Meeting 2012 Spin Workshop

PHENIX Δ G measurements

Kimiaki Hashimoto For the PHENIX Collaboration. Rikkyo University/RIKEN

- O Introduction
- Experimental setup
- O Recent PHENIX A_{LL} results
 - Mid rapidity@ 200 GeV
 - \circ Cleaner channel for ΔG measurement.
 - Forward rapidity@ 200 GeV(lower Bjorken-X region)
- O PHENIX New channel for A_{LL}
 - O Di-π⁰ (Sharper x coverage)

This talk is about contribution from gluon spin

$$\boxed{\frac{1}{2}} = \int_0^1 dx \left[\frac{1}{2} \sum_{q} (\Delta q + \Delta \bar{q})(x, \mu^2) + \Delta g(x, \mu^2)\right] + L$$

Proton Spin 1/2

Quark, anti-quark Spin

Gluon Spin

W boson production (Next talk!)

π^{0,±}, η ,h[±] ,single electron and direct photon productions

Kimiaki Hashimoto Rikkyo U.

ALL consist of PDF

ALL consist of PDF, FF

$$A_{LL} = \frac{\sigma_{++}^h - \sigma_{+-}^h}{\sigma_{++}^h + \sigma_{+-}^h} = \frac{\sum_{f_1, f_2, f} \Delta f_1 \otimes \Delta f_2 \otimes d\hat{\sigma}^{f_1 f_2 -> fX} \otimes D_f^h}{\sum_{f_1, f_2, f} f_1 \otimes f_2 \otimes \hat{\sigma}^{f_1 f_2 -> fX} \otimes D_f^h}$$

$$\begin{array}{c} \text{Polarized Proton} \\ \text{parton } f_1 \\ \text{parton } f_1 \\ \text{o} \\ \hat{\sigma} \end{array}$$

$$\begin{array}{c} \text{Measured particle} \\ \text{Tragmentation} \\ \end{array}$$

A_{LL} consist of PDF, FF, Partonic reactions

PHENIX detectors

Central Arm can
measure
π^{0,±}, η, h[±], single
electron,
(W,Jet)productions
(This talk!!)

MPC can measure cluster(This talk!!)

Muon Arm can measure
W boson production
(Next talk!)

Kimiaki Hashimoto Rikkyo U.

Cross section study in PHENIX

The recent A_{LL} results from PHENIX

The inclusive π^0 production have a large constrain of Δ G.

	√s (GeV)	<p<sub>B> (%)</p<sub>	<p<sub>y> (%)</p<sub>	L (pb ⁻¹)	FOM (P ⁴ L)
Run5	200	50	49	2.5	0.15
Run6	200	56	57	6.5	0.66
Run9	200	57	57	14	1.5

gg scattering is dominant sub process at low pt.

Kimiaki Hashimoto Rikkyo U.

The π^{\pm} production have sensitivity for sign of gluon PDF

FF; Quarks decay into
$$\pi$$
-,0

— $u\pi$ DSS NLO x0.1

— $d\pi$ DSS NLO x0.1

— $u\pi^0$ DSS NLO x0.1

$$\pi^+ = u\overline{d}$$
 $\pi^- = d\overline{u}$

- u-quark decay into π^+
- d-quark decay into π^-

From sign of quark's PDF and FFs.

- $A_{II}(\pi^+) > A_{II}(\pi^0) > A_{II}(\pi^-)$ for $\Delta G > 0$
- $A_{LL}(\pi^+) \le A_{LL}(\pi^0) \le A_{LL}(\pi^-)$ for $\Delta G \le 0$

Kimiaki Hashimoto Rikkyo U.

The π^{\pm} production have sensitivity for sign of gluon PDF

$$\pi^+ = u\overline{d}$$
 $\pi^- = d\overline{u}$

- u-quark decay into π^+
- d-quark decay into π^-

From sign of quark's PDF and FFs.

- $A_{LL}(\pi^+) > A_{LL}(\pi^0) > A_{LL}(\pi^-)$ for $\Delta G > 0$
- $A_{LL}(\pi^+) < A_{LL}(\pi^0) < A_{LL}(\pi^-)$ for $\Delta G < 0$

Kimiaki Hashimoto Rikkyo U.

The η meson production; Different FF and statistics.

- We believe A_{LL} for inclusive hadron production is small. η meson A_{LL} become systematic check.
- Different F.F. and different statistics.
- Reconstruct η meson from 2gamma.
- Branching Ratio of $\eta \rightarrow 2$ gamma; ~40%.
- Statistics is limited compare with π^0 ; 10~15% of π^0 's statistics

$$\pi^{0} = u\overline{u} - d\overline{d}$$

$$\eta = u\overline{u} + d\overline{d} - 2s\overline{s}$$

The η meson production;

Different FF and statistics.

241

The single electron almost

exclusively come from g-g scattering

• The electron from heavy meson decay.

$$D^{+} \to \overline{K}^{0} v_{e} e^{+}$$

$$D^{0} \to K^{-} v_{e} e^{+}$$

• g-g scattering is dominant process. So, the single e is clean channel for the Δ g.

electron almost e from g-g scattering

The electron from heavy meson decay.

$$D^{+} \to \overline{K}^{0} \nu_{e} e^{+}$$

$$D^{0} \to K^{-} \nu_{e} e^{+}$$

g-g scattering is dominant process.

So, the single e is clean channel for the Δg .

The dominant background sources

photon conversion

$$\pi^{0}(\eta) \rightarrow \gamma \gamma \gamma \rightarrow e^{+}e^{-}(in material)$$

Dalitz decay

$$\pi^0(\eta) \rightarrow \gamma e^+e^-$$

• direct photon conversion.

K and vector mesons decay is small at pt>0.5GeV

noto Rikkyo U.

electron almost e from g-g scattering

The electron from heavy meson decay.

$$D^+ \to \overline{K}^0 \nu_{\rho} e^+$$

The dominant background sources

- photon conversion $\pi^0(\eta) \rightarrow \gamma \gamma \gamma \rightarrow e^+e^-(in mat)$
- Dalitz decay $\pi^0(\eta) \rightarrow \gamma e^+e^-$
- direct photon conversion.

HBD is the gas Cerenkov detector with CsI evaporated GEM.

K and vector mesons decay is small at pt>0.5GeV

noto Rikkyo U.

The single electron

almost come from g-g scattering

The first time of physics measurement with PHENIX HBD!!

- HBD ; BG rejection for electron.
- RICH ; electron ID.
- DC/PC; tracking & momentum.
- EMCal; energy

Kimiaki Hashimoto Rikkyo U.

he single electron

ome from g-g scattering

PHENIX HBD was uninstalled

The subsequent study will be Single electron A_{II} with PHENIX VTX!

preliminary

eV/c]

p_{_T} [GeV/c]

The first time of physics measures

- HBD ; BG rejection for electr
- RICH ; electron ID.
- DC/PC; tracking & momentum
- EMCal; energy

Current constrain on ΔG

Integrate gluon PDF(GRSV)

over proved x range, [0.02,0.3]

Stat.error: $\Delta G_{GRSV}^{x=[0.02,0.3]} (\mu^2 = 4 \, GeV^2)$

 $=0.2 \pm 0.1 (1\sigma)$ and $0.2^{+0.2}_{-0.8} (3\sigma)$

Global Fitting result of Δg with RHIC Data(Not PHENIX analysis)

Data set.

experiment	$_{ m data}$	data point			
	type	$_{ m fitted}$			
EMC, SMC	DIS	34			
COMPASS	DIS	15			
E142, E143, E154, E155	DIS	123			
HERMES	DIS	39			
HALL-A	DIS	3			
CLAS	DIS	20			
SMC	SIDIS, h^{\pm}	48			
HERMES	SIDIS, h^{\pm}	54			
	SIDIS, π^{\pm}	36			
	SIDIS, K^{\pm}	27			
COMPASS	SIDIS, h^{\pm}	24			
PHENIX (in part prel.)	$200\mathrm{GeV}$ pp, π^0	20			
PHENIX (prel.)	$62\mathrm{GeV}$ pp, π^0	5			
STAR (in part prel.)	$200\mathrm{GeV}$ pp, jet	19			
TOTAL:		467			
TOTAL: (Phys.Rev.D80:034030,2009.)					

Global Fitting result of Δg with RHIC Data(Not PHENIX analysis)

20

- Unidentified hadron(π ,K,p etc)
- Tracking; DC+PC
- RICH was used for rejecting background from electrons.

The MPC Cluster

can access lower Bjorken-x region

- Array of PbWO₄ crystals modeles.
- 412 crystals.
- Higher energy 2gamma from π^0 merge $E_{pi0} > 20$ GeV($Pt_{pi0} > 2$ GeV)
- MPC can access low x; $x^{\sim} 10^{-3}$

The MPC Cluster

can access lower Bjorken-x region

- Array of PbWO₄ crystals modeles.
- 412 crystals.
- Higher energy 2gamma from π^0 merge $E_{pi0} > 20$ GeV($Pt_{pi0} > 2$ GeV)
- MPC can access low x; $x^{\sim} 10^{-3}$

J.Koster's D-thesis

Projection for MPC Clusters correlation and MPC-Central arm correlation@ 500 GeV

https://www.phenix.bnl.gov/phenix/WWW/p/info/an/1005/pythia_lowx_ALL.pdf

Reduce contribution from high-x.

Reduce contribution from high-x and low-x

Projection for MPC Clusters correlation and MPC-Central arm correlation@ 500 GeV

https://www.phenix.bnl.gov/phenix/WWW/p/info/an/1005/pythia_lowx_ALL.pdf

Projections for correlation measurements for ΔG (Run13 and 14 BUP).

http://www.bnl.gov/npp/docs/PAC0612/PHENIX_BUP2012_r1.pdf

Projection for MPC Clusters correlation and MPC-Central arm correlation@ 500 GeV

https://www.phenix.bnl.gov/phenix/WWW/p/info/an/1005/pythia_lowx_ALL.pdf

NEW channel for A_{LL} in PHENIX Di- π^0 Production.

Di-PiO production can reduce low-x events

- Measure "Back-to-Back" π^0 s which is produced in PHENIX Central Arm.
- This channel can reduce contribution from lowx partons.
- This measurement is first time in PHENIX.

The points in analysis.

- 2 types of background asymmetries exist.
 - \rightarrow We need to subtract 2 background $A_{LL}s$

Kimiaki Hashimoto Rikkyo U.

We can understand the structure of 2D spectrum from the fitting.

Fitting function $\rightarrow \int_x \int_y (Gaussian_x + polynomial_x)(Gaussian_x + polynomial_y)dxdy$

Fitting function can write down combination of 3 terms.

$$\int_{x} \int_{y} (Gaussian_{x} + polynomial_{x})(Gaussian_{x} + polynomial_{y})dxdy$$

$$= \int \int dx dy Gauss_x Gauss_y + \int \int dx dy (Gauss_x pol_y + Gauss_y pol_x) + \int \int dx dy (pol_x pol_y)$$

Each terms correspond to Signal and Backgrounds

Inclusive π^0 A_{LL} have just one background.

Well known formula for subtracting background asymmetry.

$$A_{LL} = \frac{N_{Signal+BG}}{N_{Signal}} A_{LL}^{Single+BG} - \frac{N_{BG}}{N_{Signal}} A_{LL}^{BG}$$

A_{LL} from signal window

A_{LL} from BG window

 2γ invariant mass distribution

But, there are 2 background A_{LL} s in di- π^0 analysis. So, we need to modify this formula.

Kimiaki Hashimoto Rikkyo U.

Our new background subtraction formula.

Well known formula for subtracting background asymmetry.

$$A_{LL} = \frac{N_{Signal+BG}}{N_{Signal}} A_{LL}^{Single+BG} - \frac{N_{BG}}{N_{Signal}} A_{LL}^{BG}$$

A_{LL} from signal window

A_{LL} from BG window

Our new background subtraction formula.

$$A_{LL} = \frac{N_{Signal+BG1+BG2}}{N_{Signal}} A_{LL}^{Single+BG1+BG2} - \frac{N_{BG1}}{N_{Signal}} A_{LL}^{BG1} - \frac{N_{BG2}}{N_{Signal}} A_{LL}^{BG2}$$

Kimiaki Hashimoto Rikkyo U.

A_{LL} in signal window include 2 background A_{LL}

Well known formula for subtracting background asymmetry.

$$A_{LL} = \frac{N_{Signal+BG}}{N_{Signal}} A_{LL}^{Single+BG} - \frac{N_{BG}}{N_{Signal}} A_{LL}^{BG}$$

A_{LL} from signal window

ALL from BG window

Our new background subtraction formula.

$$A_{LL} = rac{N_{Signal+BG1+BG2}}{N_{Signal}} \left[A_{LL}^{Single+BG1+BG2} - rac{N_{BG1}}{N_{Signal}} A_{LL}^{BG1} - rac{N_{BG2}}{N_{Signal}} A_{LL}^{BG2}
ight]$$

ALL from signal window.

Subtract 2background asymmetry

Well known formula for subtracting background asymmetry.

$$A_{LL} = \frac{N_{Signal+BG}}{N_{Signal}} A_{LL}^{Single+BG} - \frac{N_{BG}}{N_{Signal}} A_{LL}^{BG}$$

A_{LL} from signal window

A_{LL} from BG window

Our new background subtraction formula.

$$A_{LL} = rac{N_{Signal+BG1+BG2}}{N_{Signal}} \left[A_{LL}^{Single+BG1+BG2} - rac{N_{BG1}}{N_{Signal}} A_{LL}^{BG1} - rac{N_{BG2}}{N_{Signal}} A_{LL}^{BG2}
ight]$$

A_{LL} from signal window.

Background ALLS

Subtract 2background asymmetry

44

Summary

- O PHENIX inclusive π^0 (05+06+09) prefer non-zero A_{LL}
- O To decide sign of ΔG , $\pi^{\pm} A_{LL}$ also important.
 - We are analyzing RUN09 data with HBD. We expect clean separation between various particles($e^{\pm}, \pi^{\pm}, K^{\pm}$).
- Cleaner channels
 - O Single electron from heavy flavor; We hope to analyze VTX data.
 - O Direct Photon; We are analyzing RUN09 data.
- New channel; Di-π⁰ A_{LL}
 - This is a first measurements of A_{LL} which was measured by "pair" objects in PHENIX Spin group.
 - The subsequent studies are π^0 -h[±], π^0 -Jet or Di-Jet A_{LL} in Central arm.
 - O Di-Jet will be measured by sPHENIX Central Barrel and Forward.

Backups

Method of A_{LL} measurement

$$A_{LL} \equiv \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_Y P_B} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$
 Number of measured hadrons which come from helicity like coll.

R; Relative Luminosity

Direct Photon

have sensitivity of size and sign of ΔG

- q-g scattering(75%).
 - + q-qbar annihilation(25%).
- · Not need to consider FFs.
- Large photon background from π^0 , η .
- · Statistics limited.

The π^{\pm} production have sensitivity for sign of gluon PDF

A_{II} can write down......

$$A_{LL}^{\pi+,-} \approx \Delta G_1 \Delta G_2 \hat{a}_{LL}^{gg} + \Delta G_1 \Delta u \hat{a}_{LL}^{gq} + \Delta G_1 \Delta d \hat{a}_{LL}^{gq} + \cdots$$

We know quarks PDF from DIS data.

ALL can write down......

$$A_{LL}^{\pi+,-} \approx \Delta G_1 \Delta G_2 \hat{a}_{LL}^{gg} + \Delta G_1 \Delta u \hat{a}_{LL}^{gq} + \Delta G_1 \Delta d \hat{a}_{LL}^{gq} + \cdots$$

We already know sign of quark's PDF.

And we want to know sign of gluon PDF from π^{\pm} production.

This is what we want to know.

In π - production, $\mathbf{u} \rightarrow \pi$ - is larger than $\mathbf{d} \rightarrow \pi$

This is what we want to know.

We already know sign of quark's PDF.

From PDFs, Sing of u and ubar's PDF is positive. Sign of d and dbar's PDF is negative.

From FFs, In π^- production, $\mathbf{u} \rightarrow \pi^-$ is larger than $\mathbf{d} \rightarrow \pi^-$.

In π^+ production, $d \rightarrow \pi^+$ is larger than $u \rightarrow \pi^+$

This is what we want to know.

From FFs.

In π^+ production, $d \rightarrow \pi^+$ is larger than $u \rightarrow \pi^+$.

Kimiaki Hashimoto Rikkyo U.

If $\Delta G > 0$,

53

A_{LL} of π^+ larger than A_{LL} of π^-

This is what we want to know.

A_{LL} can write down......

$$A_{LL}^{\pi+,-} \approx \Delta G_1 \Delta G_2 \hat{a}_{LL}^{gg} + \Delta G_1 \Delta u \hat{a}_{LL}^{gq} + \Delta G_1 \Delta d \hat{a}_{LL}^{gq} + \cdots$$

We already know sign of quark's PDF.

From PDFs, Sing of u and ubar's PDF is positive. Sign of d and dbar's PDF is negative.

When $\Delta G > 0$, $A_{LL}^{\pi-} < A_{LL}^{\pi+}$

From FFs, In π^+ production, $d \rightarrow \pi^+$ is larger than $u \rightarrow \pi^+$.

If $\Delta G < 0$,

54

A_{LL} of π larger than A_{LL} of π ⁺

This is what we want to know.

A_{LL} can write down......

$$A_{LL}^{\pi+,-} \approx \Delta G_1 \Delta G_2 \hat{a}_{LL}^{gg} + \Delta G_1 \Delta u \hat{a}_{LL}^{gq} + \Delta G_1 \Delta d \hat{a}_{LL}^{gq} + \cdots$$

We already know sign of quark's PDF.

From PDFs, Sing of u and ubar's PDF is positive. Sign of d and dbar's PDF is negative.

When $\Delta G < 0$, $A_{I,I}^{\pi-} > A_{I}^{\pi}$

From FFs, In π^+ production, $d \rightarrow \pi^+$ is larger than $u \rightarrow \pi^+$.